# Stoichiometric Phase Protocol¶

$${{C_P}}$$ = isobaric heat capacity
V = volume

🔹 T (K), P (bars) => Gibbs free energy (J)

-(double)getGibbsFreeEnergyFromT:(double)t andP:(double)p


🔹 T (K), P (bars) => enthalpy (J)

-(double)getEnthalpyFromT:(double)t andP:(double)p


🔹 T (K), P (bars) => entropy (J/K)

-(double)getEntropyFromT:(double)t andP:(double)p


🔹 T (K), P (bars) => $${{C_P}}$$ (J/K)

-(double)getHeatCapacityFromT:(double)t andP:(double)p


🔹 T (K), P (bars) => $$\frac{{\partial {C_P}}}{{\partial T}}$$ (J/K2)

-(double)getDcpDtFromT:(double)t andP:(double)p


🔹 T (K), P (bars) => V (J/bar)

-(double)getVolumeFromT:(double)t andP:(double)p


🔹 T (K), P (bars) => $$\frac{{\partial V}}{{\partial T}}$$ (J/bar-K)

-(double)getDvDtFromT:(double)t andP:(double)p


🔹 T (K), P (bars) => $$\frac{{\partial V}}{{\partial P}}$$ (J/bar2)

-(double)getDvDpFromT:(double)t andP:(double)p


🔹 T (K), P (bars) => $$\frac{{{\partial ^2}V}}{{\partial {T^2}}}$$ (J/bar-K2)

-(double)getD2vDt2FromT:(double)t andP:(double)p


🔹 T (K), P (bars) => $$\frac{{{\partial ^2}V}}{{\partial T\partial P}}$$ (J/bar2-K)

-(double)getD2vDtDpFromT:(double)t andP:(double)p


🔹 T (K), P (bars) => $$\frac{{{\partial ^2}V}}{{\partial {P^2}}}$$ (J/bar3)

-(double)getD2vDp2FromT:(double)t andP:(double)p


🔹 optional: T (K), P (bars) => chemical potential (J)

-(double)getChemicalPotentialFromT:(double)t andP:(double)p


🔹 optional: formulae of the phase

-(NSString )getFormulaFromInternalVariables